25 research outputs found

    Comprehensive annotation of the Parastagonospora nodorum reference genome using next-generation genomics, transcriptomics and proteogenomics

    Get PDF
    Parastagonospora nodorum, the causal agent of Septoria nodorum blotch (SNB), is an economically important pathogen of wheat (Triticum spp.), and a model for the study of necrotrophic pathology and genome evolution. The reference P. nodorum strain SN15 was the first Dothideomycete with a published genome sequence, and has been used as the basis for comparison within and between species. Here we present an updated reference genome assembly with corrections of SNP and indel errors in the underlying genome assembly from deep resequencing data as well as extensive manual annotation of gene models using transcriptomic and proteomic sources of evidence (https://github.com/robsyme/Parastagonospora_nodorum_SN15). The updated assembly and annotation includes 8,366 genes with modified protein sequence and 866 new genes. This study shows the benefits of using a wide variety of experimental methods allied to expert curation to generate a reliable set of gene models

    Divalent Metal Ions in Plant Mitochondria and Their Role in Interactions with Proteins and Oxidative Stress-Induced Damage to Respiratory Function1[W][OA]

    No full text
    Understanding the metal ion content of plant mitochondria and metal ion interactions with the proteome are vital for insights into both normal respiratory function and the process of protein damage during oxidative stress. We have analyzed the metal content of isolated Arabidopsis (Arabidopsis thaliana) mitochondria, revealing a 26:8:6:1 molar ratio for iron:zinc:copper:manganese and trace amounts of cobalt and molybdenum. We show that selective changes occur in mitochondrial copper and iron content following in vivo and in vitro oxidative stresses. Immobilized metal affinity chromatography charged with Cu2+, Zn2+, and Co2+ was used to identify over 100 mitochondrial proteins with metal-binding properties. There were strong correlations between the sets of immobilized metal affinity chromatography-interacting proteins, proteins predicted to contain metal-binding motifs, and protein sets known to be oxidized or degraded during abiotic stress. Mitochondrial respiratory chain pathways and matrix enzymes varied widely in their susceptibility to metal-induced loss of function, showing the selectivity of the process. A detailed study of oxidized residues and predicted metal interaction sites in the tricarboxylic acid cycle enzyme aconitase identified selective oxidation of residues in the active site and showed an approach for broader screening of functionally significant oxidation events in the mitochondrial proteome

    Components of Mitochondrial Oxidative Phosphorylation Vary in Abundance Following Exposure to Cold and Chemical Stresses

    No full text
    Plant mitochondria are highly responsive organelles that vary their metabolism in response to a wide range of chemical and environmental conditions. Quantitative proteomics studies have begun to allow the analysis of these large-scale protein changes in mitochondria. However studies of the integral membrane proteome of plant mitochondria, arguably the site responsible for the most fundamental mitochondrial processes of oxidative phosphorylation, protein import and metabolite transport, remain a technical challenge. Here we have investigated the changes in protein abundance in response to a number of chemical stresses and cold. In addition to refining the subcellular localization of 66 proteins, we have been able to characterize 596 protein × treatment combinations following a range of stresses. To date it has been assumed that the main mitochondrial response to stress involved the induction of alternative respiratory proteins such as AOX, UCPs, and alternative NAD­(P)H dehydrogenases; we now provide evidence for a number of very specific protein abundance changes that have not been highlighted previously by transcript studies. This includes both previously characterized stress responsive proteins as well as major components of oxidative phosphorylation, protein import/export, and metabolite transport

    Components of Mitochondrial Oxidative Phosphorylation Vary in Abundance Following Exposure to Cold and Chemical Stresses

    No full text
    Plant mitochondria are highly responsive organelles that vary their metabolism in response to a wide range of chemical and environmental conditions. Quantitative proteomics studies have begun to allow the analysis of these large-scale protein changes in mitochondria. However studies of the integral membrane proteome of plant mitochondria, arguably the site responsible for the most fundamental mitochondrial processes of oxidative phosphorylation, protein import and metabolite transport, remain a technical challenge. Here we have investigated the changes in protein abundance in response to a number of chemical stresses and cold. In addition to refining the subcellular localization of 66 proteins, we have been able to characterize 596 protein × treatment combinations following a range of stresses. To date it has been assumed that the main mitochondrial response to stress involved the induction of alternative respiratory proteins such as AOX, UCPs, and alternative NAD­(P)H dehydrogenases; we now provide evidence for a number of very specific protein abundance changes that have not been highlighted previously by transcript studies. This includes both previously characterized stress responsive proteins as well as major components of oxidative phosphorylation, protein import/export, and metabolite transport

    Components of Mitochondrial Oxidative Phosphorylation Vary in Abundance Following Exposure to Cold and Chemical Stresses

    No full text
    Plant mitochondria are highly responsive organelles that vary their metabolism in response to a wide range of chemical and environmental conditions. Quantitative proteomics studies have begun to allow the analysis of these large-scale protein changes in mitochondria. However studies of the integral membrane proteome of plant mitochondria, arguably the site responsible for the most fundamental mitochondrial processes of oxidative phosphorylation, protein import and metabolite transport, remain a technical challenge. Here we have investigated the changes in protein abundance in response to a number of chemical stresses and cold. In addition to refining the subcellular localization of 66 proteins, we have been able to characterize 596 protein × treatment combinations following a range of stresses. To date it has been assumed that the main mitochondrial response to stress involved the induction of alternative respiratory proteins such as AOX, UCPs, and alternative NAD­(P)H dehydrogenases; we now provide evidence for a number of very specific protein abundance changes that have not been highlighted previously by transcript studies. This includes both previously characterized stress responsive proteins as well as major components of oxidative phosphorylation, protein import/export, and metabolite transport

    The Absence of ALTERNATIVE OXIDASE1a in Arabidopsis Results in Acute Sensitivity to Combined Light and Drought Stress[W][OA]

    No full text
    Treatment of Arabidopsis (Arabidopsis thaliana) alternative oxidase1a (aox1a) mutant plants with moderate light under drought conditions resulted in a phenotypic difference compared with ecotype Columbia (Col-0), as evidenced by a 10-fold increase in the accumulation of anthocyanins in leaves, alterations in photosynthetic efficiency, and increased superoxide radical and reduced root growth at the early stages of seedling growth. Analysis of metabolite profiles revealed significant changes upon treatment in aox1a plants typical of combined stress treatments, and these were less pronounced or absent in Col-0 plants. These changes were accompanied by alteration in the abundance of a variety of transcripts during the stress treatment, providing a molecular fingerprint for the stress-induced phenotype of aox1a plants. Transcripts encoding proteins involved in the synthesis of anthocyanins, transcription factors, chloroplastic and mitochondrial components, cell wall synthesis, and sucrose and starch metabolism changed, indicating that effects were not confined to mitochondria, where the AOX1a protein is located. Microarray and quantitative reverse transcription-polymerase chain reaction analysis revealed that transcripts typically induced upon stress treatment or involved in antioxidant defense systems, especially chloroplast-located antioxidant defense components, had altered basal levels in untreated aox1a plants, suggesting a significant change in the basal equilibrium of signaling pathways that regulate these components. Taken together, these results indicate that aox1a plants have a greatly altered stress response even when mitochondria or the mitochondrial electron transport chain are not the primary target of the stress and that AOX1a plays a broad role in determining the normal redox balance in the cell
    corecore